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Abstract. Support vector data description (SVDD) is a well-known ker-
nel method that constructs a minimal hypersphere regarded as a data
description for a given data set. However SVDD does not take into
account any statistical distribution of the data set in constructing that
optimal hypersphere, and SVDD is applied to solving one-class classi-
fication problems only. This paper proposes a new approach to SVDD
to address those limitations. We formulate an optimisation problem for
binary classification in which we construct two hyperspheres, one enclos-
ing positive samples and the other enclosing negative samples, and during
the optimisation process we move the two hyperspheres apart to max-
imise the margin between them while the data samples of each class
are still inside their own hyperspheres. Experimental results show good
performance for the proposed method.
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1 Introduction

Support vector data description (SVDD) [1] was proposed by Tax and Duin
to train a hyperspherically shaped boundary around a normal dataset while
keeping all abnormal data samples outside the hypersphere. This SVDD has
been a successful approach to solving one-class problems such as outlier detection
since the volume of this data description is kept minimal. One-class support
vector machine (OC-SVM) [2] is a similar approach proposed earlier to estimate
the support of a high-dimensional distribution. Although this method uses a
maximal-margin hyperplane instead of a hypersphere to separate the normal
data from the abnormal data, it has the same optimisation problem as SVDD.
In both OC-SVM and SVDD, the boundary in the feature space when mapped
back to the input space can produce a complex and tight description of the data
distribution.

There are various extensions to SVDD. A small hypersphere and large margin
approach was proposed in [3] for novelty detection problems where a minimal
hypersphere was trained to include most of normal examples while the margin
between the hypersphere and outliers is as large as possible. A further extension
using two large margins instead of one was proposed in [4], where an interior
margin between the hypersphere and the normal data and an exterior margin
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between the hypersphere and the abnormal data both are maximised. In [5],
the authors define an optimisation problem as maximising the separation ratio
(R+ d)/(R− d), where R is the hypersphere’s radius and d is the hypersphere’s
margin. It is shown to be equivalent to minimising (R2 − kd2) where k is a
parameter to adjust between minimising R and maximising d. Hao et al. [6] also
used a similar formulation in which several similarity functions were used to
compute the distance to centres. Another extension of SVDD is [7] in which the
use of two SVDDs for the description of data with two classes was proposed.

However all of those models are for one-class problems in which the task is to
provide a tight data description or to detect outliers. When applying to a two-
class problem where the numbers of data samples of two classes are not much
different, the boundary of one-class methods is inappropriate. To overcome this
problem, the first straight forward approach is to train two SVDDs, one for each
class and define the decision boundary as the bisector between two surfaces of
the hyperspheres. Although this approach improves the performance of one-class
methods for two-class problems, they are limited by the small-sphere constraint
of the data description.

In this paper, we propose a method using two SVDDs, one enclosing posi-
tive samples and the other enclosing negative samples, for binary classification
tasks. The minimum bounding hypersphere constraint is relaxed to allow the
hyperspheres to acquire larger regions. This is achieved by imposing a criterion
that maximises the distance between two hyperspheres while still keeping the
data inside the spheres. A margin variable is added to the optimisation to fur-
ther improve the classification boundary. Since the proposed method trains two
SVDDs that repel each other, we call it repulsive-SVDD classification (RSVC).
RSVC decision boundary can be considered as a compromise between the bound-
ary of a SVM boundary and a bisector boundary of two SVDDs’ surfaces, this
is controlled by a trade off parameter to adjust the balance between describing
the data and maximising the distance between the two sphere centres.

The rest of the paper is organized as follows. The theory of the proposed
RSVC will be presented in Section 2. Comparison of RSVC with Two SVDDs
will be discussed in Section 3. Experimental results are presented to show the
performance of the proposed method in Section 4. Finally, Section 5 presents
our conclusions.

2 Proposed Approach: Repulsive-SVDD Classification
(RSVC)

To apply SVDD for binary classification problems, we construct a hypersphere
for each class to describe its data distribution with additional properties to dis-
criminate the two classes. First, the hypersphere constraint in SVDD is relaxed
to allow this hypersphere to acquire a larger area that is far from the other class.
This is achieved by imposing a criterion that maximises the distance between two
hyperspheres while still keeping all data samples of a class inside its hypersphere.
Second, the margin (i.e., the distance between surfaces of the two hypersphere)
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is maximised, similar to the maximal margin philosophy of a support vector
machine.

A visualisation of RSVC is demonstrated in Fig. 1. In the left figure, SVM
determines a maximum margin hyperplane without considering data distribu-
tions of positive and negative classes. Whereas in the middle figure, SVDDs
determine two minimal hyperspheres without considering the margin between
the two classes, and the decision boundary is the perpendicular hyperplane of
the line segment connecting the two hypersphere centres.

By contrast, our RSVC can provide an intermediate solution between SVM
and SVDDs. Given the problem in Fig. 1, the RSVC optimisation problem
attempts to keep the radii minimum while maximising the distance between
the two hyperspheres. As a result, the hyperspheres will expand in the direction
that increases the distance between the two hyperspheres. Moreover, the weights
of these two directions can be controlled by a parameter.
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Fig. 1. SVM (left figure) determines a maximum margin hyperplane without consider-
ing data distributions of positive and negative classes. SVDDs (middle figure) determine
minimum hyperspheres without considering the margin between two classes. RSVC
(right figure) determines two minimal hyperspheres, one enclosing positive samples
and the other enclosing negative samples, while maximising the distance between two
centres to a degree controlled by a parameter.

2.1 Problem Formulation

Consider a dataset {xi}, i = 1, . . . , n with two classes, positive class with n1 data
samples and negative class with n2 data samples, n1 + n2 = n. The problem
of RSVC is to determine two optimal hyperspheres (a1, R1) and (a2, R2), one
encloses data samples of the positive class and the other encloses data samples
of the negative class, and at the same time maximise the distance between the
two centres. In addition, all positive and negative data samples are forced to
stay outside the margin ρ1 and ρ2 of the positive hypersphere and the margin of
the negative hypersphere respectively. The optimisation problem is formulated
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as follows:

min
R1,R2,a1,a2,ρ1,ρ2

R2
1 +R2

2 − k||a1 − a2||2 − μ1ρ1 − μ2ρ2 (1)

s.t. ||φ(xi)− a1||2 ≤ R2
1 − ρ1, ∀i, yi = +1 (2)

||φ(xi)− a1||2 ≥ R2
1 + ρ1, ∀i, yi = −1 (3)

||φ(xi)− a2||2 ≤ R2
2 − ρ2, ∀i, yi = −1 (4)

||φ(xi)− a2||2 ≥ R2
2 + ρ2, ∀i, yi = +1 (5)

ρ1 ≥ 0, ρ2 ≥ 0 (6)

where k is a parameter which represents the repulsive degree between two cen-
tres, μ1 and μ2 are two parameters controlling the support vectors, and φ is the
mapping to transform the vector xi to a feature space.

The above problem is for separable datasets. In practice, to allow errors, the
constraints are relaxed by introducing slack variables ξ1i and ξ2i, and penal-
ized terms are added to its objective function. In addition, if we combine the
constraints in this problem to have a simpler form, the optimisation problem
becomes:

min
R1,R2,a1,a2,ρ1,ρ2,ξ1i,ξ2i

R2
1 +R2

2 − k||a1 − a2||2 − μ1ρ1 − μ2ρ2

+
1

ν1n1

∑

i

ξ1i +
1

ν2n2

∑

i

ξ2i (7)

s.t. yi||φ(xi)− a1||2 ≤ yiR2
1 − ρ1 + ξ1i, ∀i (8)

yi||φ(xi)− a2||2 ≥ yiR2
2 + ρ2 − ξ2i, ∀i (9)

ρ1 ≥ 0, ρ2 ≥ 0 (10)
ξ1i ≥ 0, ξ2i ≥ 0 ∀i (11)

where ν1 and ν2 are parameters controlling the number of support vectors,
together with μ1 and μ2. They will be explained in Proposition 1 below.

2.2 Convex Formulation of RSVC

Although the optimisation in (7) has a non-convex objective function, it can be
reformulated to have a convex form as follows:

min
R1,R2,a1,a2,ρ1,ρ2,ξ1i,ξ2i

R2
1 − a2

1 +R2
2 − a2

2 + a2
1 + a2

2 − k||a1 − a2||2

−μ1ρ1 − μ2ρ2 +
1

ν1n1

∑

i

ξ1i +
1

ν2n2

∑

i

ξ2i (12)

s.t. yiφ(xi)2 − 2yiφ(xi)a1 ≤ yi(R2
1 − a2

1)− ρ1 + ξ1i,∀i (13)
yiφ(xi)2 − 2yiφ(xi)a2 ≥ yi(R2

2 − a2
2) + ρ2 − ξ2i,∀i (14)

ρ1 ≥ 0, ρ2 ≥ 0 (15)
ξ1i ≥ 0, ξ2i ≥ 0 ∀i (16)
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Let δ1 = a2
1 −R2

1, δ2 = a2
2 −R2

2 and 0 ≤ δ0 ≤ ||a1 − a2||2, (12) becomes

min
δ1,δ2,δ0,a1,a2,ρ1,ρ2,ξ1i,ξ2i

−δ1 − δ2 + a2
1 + a2

2 − kδ0 − μ1ρ1 − μ2ρ2

+
1

ν1n1

∑

i

ξ1i +
1

ν2n2

∑

i

ξ2i (17)

s.t. 2yiφ(xi)a1 − yiφ(xi)2 ≥ yiδ1 + ρ1 − ξ1i, ∀i (18)
2yiφ(xi)a2 − yiφ(xi)2 ≤ yiδ2 − ρ2 + ξ2i, ∀i (19)
ρ1 ≥ 0, ρ2 ≥ 0 (20)
ξ1i ≥ 0, ξ2i ≥ 0 ∀i (21)
||a1 − a2||2 ≥ δ0 (22)
δ0 ≥ 0 (23)

We can construct the Lagrange function below using these following Lagrange
multipliers α1i, α2i, γ1i, γ2i, θ1, θ2, β, λ:

L(δ1, δ2, δ0, a1, a2, ρ1, ρ2, ξ1i, ξ2i, α1i, α2i, γ1i, γ2i, θ1, θ2, β, λ) = −δ1 − δ2
+a2

1 + a2
2 − kδ0 − μ1ρ1 − μ2ρ2 +

1
ν1n1

∑

i

ξ1i +
1

ν2n2

∑

i

ξ2i

−
∑

i

α1i(2yiφ(xi)a1 − yiφ(xi)2 − yiδ1 − ρ1 + ξ1i)−
∑

i

γ1iξ1i − θ1ρ1

+
∑

i

α2i(2yiφ(xi)a2 − yiφ(xi)2 − yiδ2 + ρ2 − ξ2i)−
∑

i

γ2iξ2i − θ2ρ2

−β(||a1 − a2||2 − δ0)− λδ0

(24)

Using KKT conditions, we have:

∂L

∂δ1
= 0 ⇒ −1 +

∑

i

α1iyi = 0 ⇒
∑

i

α1iyi = 1 (25)

∂L

∂δ2
= 0 ⇒ −1 +

∑

i

α2iyi = 0 ⇒
∑

i

α2iyi = 1 (26)

∂L

∂δ0
= 0 ⇒ −k + β − λ = 0 ⇒ β − λ = k (27)

∂L

∂a1
= 0 ⇒ (1− β)a1 + βa2 =

∑

i

α1iyiφ(xi) = A (28)

∂L

∂a2
= 0 ⇒ (1− β)a2 + βa1 = −

∑

i

α2iyiφ(xi) = −B (29)

∂L

∂ξ1i
= 0 ⇒ 1

ν1n1
− α1i − γ1i = 0 ⇒ α1i + γ1i =

1
ν1n1

∀i (30)

∂L

∂ξ2i
= 0 ⇒ 1

ν2n2
− α2i − γ2i = 0 ⇒ α2i + γ2i =

1
ν2n2

∀i (31)
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∂L

∂ρ1
= 0 ⇒ −μ1 +

∑

i

α1i − θ1 = 0 ⇒
∑

i

α1i − θ1 = μ1 (32)

∂L

∂ρ1
= 0 ⇒ −μ2 +

∑

i

α2i − θ2 = 0 ⇒
∑

i

α2i − θ2 = μ2 (33)

Equations (28) and (29) leads to

{
a1 + a2 = A−B
a1 − a2 = A+B

1−2β

⇒
{
a1 = (1−β)A+βB

1−2β

a2 = −βA+(β−1)B
1−2β

(34)

By substituting the KKT conditions into the Lagrangian function we obtain
the dual form of the optimisation:

min
1

1− 2k

[
(1− k)

∑

i,j

α1iα1jyiyjK(xi, xj) + (1− k)
∑

i,j

α2iα2jyiyjK(xi, xj)

+2k
∑

i,j

α1iα2jyiyjK(xi, xj)
]

+
∑

i

α1iyiK(xi, xi)−
∑

i

α2iyiK(xi, xi) (35)

s.t.
∑

i

α1iyi = 1 ,
∑

i

α2iyi = −1 (36)

∑

i

α1i = μ1 ,
∑

i

α2i = μ2 (37)

0 ≤ α1i ≤ 1
ν1n1

, 0 ≤ α2i ≤ 1
ν2n2

∀i (38)

where the inner product between vectors has been replaced by the kernel K,
and the Lagrange multipliers γ1i ≥ 0, γ2i ≥ 0, θ1 ≥ 0, θ2 ≥ 0, λ ≥ 0 have been
removed from Equations (30), (31), (32), (33) and (27) respectively. Similarly to
ν-SVC,

∑
i α1i is set to μ1,

∑
i α2i is set to μ2 and β is set to k, where k is a

parameter chosen in the range k ∈ [0, 1
2 ).

It can be seen that if k is set to 0 in the above optimisation problem then the
RSVC optimisation problem (35) can be broken into two independent optimi-
sation problems similar to SVDDs except for the extra constraints

∑
i α1i = μ1

and
∑
i α2i = μ2 resulting from the margin requirements in the original RSVC

problem (1).
Solving the problem (35) gives a set of α1i, α2i. Then the centres a1, a2 can

be determined from Equations (34).
To determine the radius R1, the support vector xt that lies on the surface

of the hypersphere (a1, R1) and corresponds to the smallest α1t ∈ (0, 1
ν1n1

) is
selected. Then the radius R1 is calculated as R1 = d1(xt), where d1(xt) is the
distance from xt to the centre a1 and is determined as follows:

d2
1(xt) = ‖φ(xt)− a1‖2 =K(xt, xt)− 2

1− k
[
(1− k)

∑

i

α1iyiK(xt, xi)

+ k
∑

i

α2iyiK(xt, xi)
]
+ a2

1

(39)
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The radius R2 is calculated similarly:

d2
2(xt) = ‖φ(xt)− a2‖2 =K(xt, xt)− 2

1− k
[− k

∑

i

α2iyiK(xt, xi)

+ (k − 1)
∑

i

α2iyiK(xt, xi)
]
+ a2

2

(40)

In the test phase, a sample x can be determined whether it belongs to the
hypersphere (a1, R1) or (a2, R2), i.e. class +1 or class -1, by the following decision
function:

sign(d2
2(x)− d2

1(x)) (41)

2.3 ν-Property

Following [8], a data sample xi is called a support vector if it has Lagrange
multiplier αi > 0; a data sample is called a margin error if it has positive slack
variable ξi > 0.

Similarly to the property of the ν parameter in ν-SVC [8], we derive the
property for the ν1, ν2, μ1 and μ2 parameters and use it for parameter selection
to train the RSVC.

Proposition 1. Let m1 and m2 denote the number of margin errors of the
positive sphere and negative sphere respectively, and let s1 and s2 denote their
numbers of support vectors. Then for parameters ν1, ν2, μ1 and μ2 we have:

1. μ1ν1 and μ2ν2 are upper bounds on the fraction of margin errors, and a lower
bound on the fraction of support vectors for the positive sphere and negative
sphere respectively:

m1

n1
≤ μ1ν1 ≤ s1

n1
and

m2

n2
≤ μ2ν2 ≤ s2

n2
(42)

2. The feasible ranges of ν1, ν2, μ1 and μ2 are:

0 < ν1 ≤ 1 , 1 ≤ μ1 ≤ 1
ν1

and 0 < ν2 ≤ 1 , 1 ≤ μ2 ≤ 1
ν2

(43)

Proof. We first prove for the positive hypersphere.

1. By the KKT conditions, all data points with ξ1i > 0 imply γ1i = 0. From (30)
we have the equation α1i = 1/(ν1n1) holds for every margin error. Summing
up α1i and using

∑
i α1i = μ1 from (37) we have:

m1

ν1n1
≤

∑

i

α1i = μ1 (44)

On the other hand, (38) indicates that each support vector of the positive
hypersphere can get at most 1/(ν1n1). Therefore summing up α1i for support
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vectors of positive hypersphere, plus α1i = 0 for non-support vectors, and
from (37) we have:

s1
νn1

≥
∑

i

α1i = μ1 (45)

Combining (44) and (45) we have the inequalities (42) for the positive hyper-
sphere.

2. From (42) we have 0 < μ1ν1 ≤ 1. In addition, from (36) we have
∑

i

α1iyi = 1,

or
∑

{i:yi=+1}
α1i = 1 +

∑

{i:yi=−1}
α1i.

Since α1i ≥ 0 ∀i, this leads to μ1 =
∑

i

α1i ≥
∑

{i:yi=+1}
α1i ≥ 1.

Combining these results we have the proof of (43).

The proof of inequalities (42) and (43) for the negative hypersphere is similar.

The proposed RSVC is for binary classification problems. It can be extended
for multi-class classification problems by using “one-against-the rest” approach
or “one-against-one” approach. Following [9], we use the one-against-one app-
roach in this paper where data of every pair of classes are used to train a binary
classifier that separates the two classes, resulting in M(M − 1)/2 classifiers in
a M -class classification problem. In the test phase, a voting strategy is used:
each binary classification of a test sample generates a vote, and the class with
the maximum number of votes for this test data sample is output as the overall
classification result. In case that two classes have identical votes, one can simply
choose the class appearing first in the array of storing class names as in [9].

3 Comparison of RSVC with Two SVDDs

SVDD can be extended to two SVDDs to describe a data set of two classes.
Consider a data set {xi}, i = 1, . . . , n of two classes, positive class with n1 data
samples and negative class with n2 data samples, n1 +n2 = n. The optimisation
problem is formulated as follows [7]:

min
R1,R2,a1,a2,ξ1i,ξ2i

R2
1 +R2

2 +
1

ν1n1

∑

i

ξ1i +
1

ν2n2

∑

i

ξ2i

s.t. ||xi − a1||2 ≤ R2
1 + ξ1i, ∀i, yi = +1

||xi − a1||2 ≥ R2
1 − ξ1i, ∀i, yi = −1

||xi − a2||2 ≤ R2
2 + ξ2i, ∀i, yi = −1

||xi − a2||2 ≥ R2
2 − ξ2i, ∀i, yi = +1

ξ1i ≥ 0, ξ2i ≥ 0 ∀i

(46)

where (a1, R1) and (a2, R2) are two hyperspheres, ν1, ν2 are parameters.
This optimisation can produce a description of two minimal hyperspheres

enclosing two classes. The decision boundary can be defined as the bisector
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between their surfaces. However this model is for one-class problems in which
the task is to provide a tight data description or to detect outliers. When applying
to a two-class problem where the data samples of two classes are balance the
boundary of one-class methods is inappropriate. The RSVC can overcome this
problem by allowing hyperspheres to acquire a larger area by minimising−k||a1−
a2||2 and creating a larger margin by minimising −μ1ρ1−μ2ρ2 while still trying
to provide data description for two classes.

4 Experiments

4.1 2-D Demonstration of RSVC

Figure 2 shows visual results for experiments performed on a simple 2-D datasets
using RSVC. When parameter k = 0, the RSVC optimisation function becomes
the optimisation function for two SVDDs, hence two SVDDs is a special case of
RSVC. It can be seen that when k increases, two hyperspheres repulsed each
other, resulting in a larger margin in between. Those data samples outside
the hyperspheres but inside this margin are penalised by a cost proportional
to 1/(ν1n1) or 1/(ν2n2). The decision boundary is the bisector between the
hyperspheres’ surfaces. The first row in Figure 2 shows that when parameter k
increases, the hypersphere enclosing positive samples is moving away from neg-
ative samples while keeping all the positive samples inside it. The second row
in Figure 2 shows that when μ1ν1 and μ2ν2 increase, more positive samples are
outside the hyperspheres.

Classification experiments were conducted on 9 UCI datasets1. Details of
these datasets are listed in Table 1. The datasets were divided in to 2 subsets, the
subset contained 50% of the data is for training and the other 50% for testing.
The training process was done using 5-fold cross validation. The parameters for
the methods are as follows. Gaussian mixture models (GMM) [10] use 64 mix-
ture components. OC-SVM parameters are searched in γ ∈ {2−13, 2−11, . . . , 21}
and ν ∈ {2−5, 2−4, . . . , 2−2}. Parameters of SVDD and SVDD with nega-
tive examples (Two SVDDs) are searched in γ ∈ {2−13, 2−11, . . . , 21} and
ν ∈ {2−5, 2−4, . . . , 2−2}. SVM parameters are search in γ ∈ {2−13, 2−11, . . . , 21}
and C ∈ {2−1, 23, . . . , 215}; and RSVC parameters are searched in γ ∈
{2−7, 2−5, . . . , 2−1}, ν1 = ν2 ∈ {0.001, 0.01}, μ1 = μ2 ∈ {10, 30, . . . , 90}, and
k ∈ {0.5, 0.7, 0.9}.

Note that the parameter γ in RSVC is searched in a narrower range than
that in SVM, while ν1n1 and ν2n2 are searched in a roughly similar number
of options as of parameter C. This is to produce a sparse number of support
vectors and avoid over fitting of the two SVDDs. Parameter k ∈ {0.5, 0.7, 0.9}
is to favour classification more than tight description. After the best parameters
are selected in the cross validation step, the models are trained again with them
on the whole training set and are tested on the 50% unseen test set. Experiments
1 Available online at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Fig. 2. The first row contains screenshots for RSVC when k = 0, 0.3 and 0.6, and
μ1ν1 = μ2ν2 = 0.2. The second row contains screenshots for RSVC when μ1ν1 =
μ2ν2 = 0.1, 0.2 and 0.5, and k = 0.9. A Gaussian RBF kernel was used, with γ = 5.
Red points are positive samples and blue points are negative samples.

were repeated 10 times and the results were averaged with standard deviations
given.

Table 2 shows the prediction rates in cross validation training. Table 3 shows
the prediction rates on unseen test sets with best parameters selected.

It can be seen that the GMM, OCSVM and SVDD have undesirable perfor-
mance in the classification task.

The two SVDDs have much higher performance than these one-class meth-
ods since they describe two minimal hyperspheres enclosing two classes and the

Table 1. Dataset information: number of classes, dataset size and number of features

Data set #class size #feature

Fourclass 2 862 2
Liver disorders 2 345 6

Heart 2 270 13
Wine 3 178 13

Breast Cancer 2 683 10
Diabetes 2 768 8

Australian 2 690 14
Ionosphere 2 351 34

German numer 2 1000 24
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decision boundary is the bisector between their surfaces. It can be seen that
SVM has higher performance than two SVDDs, it trains a maximal-margin sep-
arating hyperplane rather than two minimal hyperspheres. RSVC show highest
performance in most datasets. RSVC can overcome the limitation of two SVDDs
for the classification task by training two SVDDs that repel each other, allowing
spheres to acquire a larger area and creating a larger margin while still trying
to provide data description for two classes.

Table 2. Prediction rates in cross validation training of classification methods

Dataset GMM OCSVM SVDD Two SVDDs SVM RSVC

Fourclass 67.24 ±5.73 62.15 ±3.3 54.01 ±4.97 71.44 ±4.15 75.08 ±4.4 77.98 ±4.52
Liver disorders 40.86 ±5.63 50.41 ±5.69 55.41 ±5.87 55.15 ±5.49 59.90 ±3.53 60.14 ±5.56

Heart 46.33 ±4.26 60.24 ±5.89 46.41 ±4.24 61.11 ±5.98 72.56 ±4.24 76.44 ±4.45
Wine 33.43 ±5.03 55.57 ±4.07 46.43 ±5.8 59.89 ±3.7 75.24 ±5.56 83.15 ±4.59

Breast cancer 56.52 ±3.34 73.85 ±4.11 62.91 ±4.15 77.16 ±4.08 81.29 ±4.44 81.49 ±4.46
Diabetes 55.24 ±5.06 51.84 ±3.99 40.24 ±5.16 50.95 ±5.63 63.47 ±5.93 66.87 ±3.28

Australian 54.15 ±5.84 58.36 ±5.52 48.23 ±5.16 61.03 ±5.75 70.96 ±3.53 71.90 ±3.66
Inosphere 57.12 ±3.61 65.48 ±3.85 34.26 ±3.48 68.92 ±4.59 73.69 ±4.51 75.86 ±4.29

German numer 40.09 ±5.49 58.96 ±5.39 58.14 ±5.31 59.65 ±5.51 64.04 ±5.99 65.75 ±3.35

Table 3. Prediction rates on unseen test sets; classification methods on 9 datasets

Dataset GMM OCSVM SVDD Two SVDDs SVM RSVC

Fourclass 67.24 ±5.73 59.08 ±3.24 54.44 ±5.09 72.24 ±5.04 70.72 ±5.64 75.65 ±5.92
Liver disorders 40.86 ±5.63 43.48 ±4.88 47.68 ±4.4 50.25 ±5.15 52.03 ±3.03 54.12 ±5.53

Heart 46.33 ±4.26 57.49 ±4.83 46.41 ±4.24 61.08 ±3.02 71.51 ±4.47 72.12 ±4.36
Wine 33.43 ±5.03 42.09 ±6.99 21.41 ±2.35 46.46 ±5.84 75.66 ±4.86 76.99 ±4.69

Breast cancer 56.52 ±3.34 73.08 ±4.01 48.34 ±7.87 75.03 ±4.33 79.92 ±4.34 79.79 ±5.07
Diabetes 55.24 ±5.06 55.68 ±5.34 39.30 ±4.98 54.10 ±5.71 60.21 ±3.16 59.00 ±3.81

Australian 54.15 ±5.84 56.44 ±5.53 48.38 ±5.03 55.75 ±3.83 69.71 ±3.42 68.95 ±3.53
Inosphere 57.12 ±3.61 62.55 ±4.71 38.41 ±2.7 65.79 ±5.72 69.07 ±4.3 70.74 ±4.63

German numer 40.09 ±5.49 58.07 ±5.47 58.40 ±5.34 57.46 ±5.32 62.30 ±5.7 63.90 ±5.67

5 Conclusion

We have proposed the repulsive-SVDD classification to extend SVDD for binary
classification problems. Two hyperspheres are trained in an optimisation problem
to describe the distribution of two classes. Additional requirements are added to
the optimisation problem to help with the discrimination task. First, the distance
between two hypersphere centres is maximised to allow hyperspheres to expand.
Second, margins between the hypersphere surfaces and data are maximised. The
resulting method can create a decision boundary that takes information not only
from distributions of the classes but also the boundary’s margins. Experimental
results on 9 datasets validate the good performance of the proposed method.
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